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SMALI, OSCILLATIONS OF THIN RESILIENT CONICAL SHELIS™

By E. I. Grigolyuk**

M, Strutt [1] investigated axially-asymmetric cscillations of thin
resilient conical shells which were inelastic on their middle surfaces,
fastened at one end to a stiff diaphragm and free at the other, suitable
for calculation of the natural oscillation values of a conical loud-
speaker, He disregarded deviation of the curve in meridional direction
and allowed for inertia in all directions. The conditions of inelasticity
of the middle surface of a conical shell (El 2 le = 0) were met by

him in the following expressions for radial w, tangential y and axial u
displacement of the middle surface

w = — 90C & CO08 &f E[%m’c-}n(r—c)]A,sinno

u=—¢coeacosulz%‘4nsinn9
"
U=mulz(r—a)A“cosmp
n

where a is the radius of the smaller base of the conical shell, r is the
radius of the parallel ring of the shell, is the polar angle in the plane
of the parallel ring, 2n is the number of peripheral half-waves in the
oscillations, w is the frequency of the natural oscillation, t is the time,
An is a constant and &« is the angle of inclination of the generator to the

ps}allel ring of the shell,

Here there is on the inside ring (r = a) a lengthening of radluslﬁr =
= ucos o +¥sin® = O and the peripheral displacement vy =0, Proceedlng
further, the derivation was carried out by the energy method and a
formula obtained for determination of the frequency of the natural oscill-
ations, from which Rayleigh's formula follows by limiting transition for an

inelastic infinitely long cylindrical shell [2].
Urk and Hut [3], to verify the applicability of Strutt's formula, made

*Tiinslated from Izvestiia Akademii Nauk SSSR, 0.T.D., no. 6, 1956,
pp. 35-44.

**
Institute of Mechanics of the Academy of Sciences, USSR.
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an experimental investigation of the determination of the radial frequen-
cies of the oscillations of thin aluminum shells with a longitudinally
welded seam; at a distance of one third of the generator from the outside
edge on the exterior surface of the shell there was fastened a piece of

iron, opposite which there was placed an electromagnet connected to a
variable frequency source, setting up an oscillation of the shell with

the same frequency as the source; with osclliation of the shell, powder
sprinkled on its inside surface and adhering to it is dispersed along

the node line after a very short time. Thus the mmber of lines of

Junction in the oscillations is established. Non-conformity of Strutt's
formula with the experimental data appeared generally in the entire

diapason of frequencies. The difference in frequency was from two to

three times. This is understandable if it 15 kept in mind that the
conditions of inelasticity of the middle sur ace do not correspond to

the real picture of the osclllations of the shell.

Attempts to take the elasticity of the middle surface of a conical
shell into consideration in determining the frequencies of natural oscill-
ations were undertaken by V, E. Breslavskii (4], who used the energy method,
taking the displacement expressions ip the same form as for a cylindrical -
shell with attached rims. The method of integration of the expression for
potential energy, analogous to that taken in the literature [S] led to the
circumstance that instead of a conical shell, essentially, a cylindrical
shell with a certain mean radius not determined in the work was studied,

In the development of this work [6,7] we investigated the solution of
the problem of small natural oscillations ¢f thin conical shells of any
pitch with attached rims; in particular, the solution for a closed conical
shell and new results for a cylindrical shell [8-14] are obtained.

1. The Equation of Motion. We will solve the problem by the energy method.

The potential energy of a truncated ccnical shell is equal to (see
figure):

m= 4V {efn+or = 20w fr+
o
+Dita+x)—2(1—p) ("1":—"11’)|}'d?d5 (1.1)

where
e, =ncosx, &= -:—-(ucosa—wsina-}— v)
Tia= —:—(—vcosa+u'+v'rcosa),
%, =w" costa,x, = ;“ («'rcos?a 4 w” + v sina) (1.2)
%y = ;l,(w"r cosa + vrsinacosa —u’ cosz— rsinacosa)

__E3 E®
B=1"h. D=gi—x (1.3)

whereupon s = r / cos o is the distance from the apex of the shell at the



generator middle surface, 8, = B) = 1 which is the length of the shell at
the generator, E and } are %he modulus of elasticity and the Poisson's ratio
of the material of the shell, and 8 is the thickness of the shell,

Here a dot indicates differentiation with
respect to radius r and a hatchure with respect
to the angle @. The kinetic energy of the
oscillating shell is

T 8y
K= 317§+ o2 + wryrdpar (019

where ¥ is the specific gravity of the mater-
ial of the shell, g is the gravity acceleration.
Index t below on the right signifies differenti-
ation in time.

Let us assume that the conditions of the

attached rims are fulfilled:
w.(‘l- ?) = ”(sl- ?) =w (slv ?) = U(S,, ?) =0.

The following expressions for displacement fulfil these conditions:

w = Artsin 20 (’l_ ) sin ng
v=Ar? sin'-'ﬂ'—l——i'—)cosmp (1.5)

u = Ayt cos L ("'— *D sin np

Here Al = Al(t), Az = Aa(t). A3 = A3(t) are functions of time, m is
the number of axial half-waves, n is the number of semi-circular waves.

The formulas (1.5) fulfil the kinematic as well as the static condit-
ions for an oscillating cylindrical shell with attached rims,.

Let us introduce expressions (1.5) into formulas (1.1) and (1.4).
Then we get

n* = _?_]‘1_ = ':— kAt + ':_ kA + ’;’ kyA + kA Ay + kF'AlA’ + kA4,

ni‘B

2K P3
h K® = :{; = L7, (kAs® + koAt + kyAu?) (/‘ = ![E) (1.6)
where

ky = ko, ky = ko + $ka, ky = ks + LI
173\
k= ki, ky = kg, k¢ =1ke + L1 = i‘i('[) (1.7)



=ulifmm+ 120 + 0+ wmt] costa 4
+25[- 1801 +p)+='m?| Aeostasina + 12 24 (1 + p) +
+ 5e'm? A3 cos*a sin @ -+ 16 [12 (1 + p) + 52?m? A3 costasin®a 4
+ 60xm®)d cos asinta + 2Untm sinta + 3 (1 —p) [(1+ -27) costa +
+2(2+ g,m,)kcos’azsm x 4 6A%cos a sin?a 4 4X?sin? a] n’}

b= 0 (54t — ot s
+ 6(2 + v’m? -—-;,?T,) Asinacosta + 3 (6 + 5nm?)A?sin?acos®x 4-
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+ 15n*m*\4 sint a cos a 4 6n2m*\S sin® a] +3 [( 1— ,‘73"-‘7) cos’a -}
+2 (2—"—,%) Asinacos®« 4 6A?sin? a cosa + 4A3 sin? a] n’}

ke =

*a + 2(1 4 2n?m?) A sinacos®a 4
+ 6a'm**sin?a cosa + 4n*m™\3sin®a] + (cosa 4 2A sin a) n?)

k,,=%'—' (i—;,?’?) cosx - 2(2—:%)Lsinacos’a +

-4 6t sinta cosa + 4)3sin? }
ky, = d“ {94123 + p)n*m? 4 n*md) cosba +
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+ 2(—1 + 2«®m?) ) sina cos?a -+ 6ntm\?sindacosa +
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ky = k= L (2____#’:1, + ;‘% cosda + 6(2_;::_,‘;_,4_%) \sinxcosta +
+ 30(1—3’:;') A*sin?a cosdx + 20 (2——’:,:;,) A sindacos?a 4
+ 30M¢sin*a cos a 4 12M\%sin® a} (1.8)

,X- g/k, a is the radius of the upper base of the shell, h is its height,

The equation of motion is obtained from

aK* one . .
5A_“)‘+0_A:—0 (l=1,2,“)

As & result we have a common system of three linear differential

equations
JkoAsee + k3 Ay + kA, + kA, =0

foksAos + k2 Ay + koA, + kA3 =0 (1.9)
1k Az + K Ay + kA, + kA4, =0

which is fulfilled in
Ay =wocoswt, A;=rycoswt, Ay=uycoswt

(1.10)

where w_, v_ u_ are amplitudes of the components of displacement of the
o o
middle surfgce.

2. The Frequency of Natural Oscillation. Let us substitute (1.10) in
(1,9) and require that the system of three linear algebraic equations
give a non-null solution fgr Vo V and u, . This gives a cubic equation

for the determination of @, °
/(@32) = ay0,* + awt + a0, +d, =0 2.1)

h
herelpon 8o = k3 (k1ky — k) + 2k Fyke — kik® — ok

al _ — k’ (A.lkz _ A.‘z) + k62k1 -_ kl‘-ﬂks _— kzksk, + ’I's,k’
0y = kkoky 4 Kokky + kokoky, @y = — kikyky (2.2)
Besides this

w, =l (-1:‘—2—21 (2.3)

If we disregard inertia of the shell in the axial and circumferential
directions we get the following linearized formula for determination of

the frequency

ay = — Ky (kk: — &%) (2.4)

I
l
l

.
“w

Biln
-le



This can be converted to ,2_ fi+¢Fi44tF,
A Y (2.5)

where
= ko (K2okso — keo®) + kg0 (2k50heo — kyckgo) — kzokbo’

= kyo (Kaokys + kokso — 2keoke1) + koo (Msoku — kayrkyo) — k:lkw’
Fy= kyo(katkyy — ke*), Ty = (kyokao— ko, T,= kyokaiks

(2.6)

2

The calculations show that in formula (2.5) members with ;’ in the

numerator and* in the denominator can be omitted, Hence

Fy 4 4F, 2.7

o= T,

The case of axially symmetric oscillations is not obtained from this
solution because of a not conmpletely fortunate selection of approxirate
functions; if it is assumed that u ard w are proportional to cos n;ﬂ,
the case of axially symmetrical oscillations would correspond to n = O,

3. Numerical Treatment of the Results. The numerical calculations
indicate that for determination of the frequencies of natural osclllatlon
of a conical shell with an angle of inclination of the generator 75°
the formulas to be further developed can be used for cylindrical shells
of the same thickness, in which instead of the radius there should be
interpolated the half-sum of the radii of the bases of the conical shell
and instead of the length, the height of the conical shell,

Table 1 presents values of &), for a 2losed conical shell (A = 0) for
a series of proportions /b (b is the radius of the base) and for &« = 3 '

5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45, 50°, s5°, 60°, 65°, 70°, 75°,
80°, 65°, 87°. fThe corresponding values >f n are given in Table 2.
We assumed m = 1 and K= 0,3 in all the calculations.

4, A Cylindrical Shell. For a cylindrical shell &= 90°, A= a/l, where
& = the radius of the middle surface, 1 the length of the shell. Let us
introduce the designations

k=%=il—2(%),, w‘=)\m.=am‘/@::‘-—_2§3 (41)

Then instead of expressions (2.1) and (2.5) we get the corresponding

J (@) = 56" + a0 + 00" + 4, =0 (4.2)
oo = Lt At K (4.3)

8 + kty
where

Ay = /1 + /2" + /3"’
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TABLE 1.- VALUES OF wyin FOR A CLOSED CONICAL SHELL

8/d 0.03 0.02 0.015 0.0t 0.009 0.008 0.007
a=3" - — - - — 0.102 0.0931
5 — — —_ 0.141 0.133 0.126 0.116
10 — 0.281 0.242 0.193 0.184 0.175 0.162
15 0.419 0.335 0.288 0.236 0.223 0.212 0.204
20 0.479 0.381 0.355 0.287 0.267 0.249 0.231
25 0.519 0.432 0.369 0.311 0.293 0.275 0.258
30 0.562 0.467 0.404 0.337 0.319 0.302 0.286
35 0.607 0.499 0.438 0.362 0.344 0.328 0.312
40 0.652 0.529 0.469 0.386 0.368 0.351 0.335
45 0.693 0.559 0.498 0.408 0.3% 0.372 0.355
- 50 0.729 0.586 0.522 0.430 0.409 0.3%0 0.372
55 0.757 0.614 0.541 0.452 0.429 0.406 0.386
60 0.776 0.644 0.582 0.479 0.451 0.424 0.39%9
. 65 0.789 0.688 0.582 0.493 0.478 0.450 0.418
70 0.809 0.693 0.627 0.504 0.482 0.462 0.444
75 0.877 0.701 0.628 0.548 0.515 0.483 0.433
80 0.891 0.810 0.672 0.553 0.533 0.514 0.434
85 0.963 0.779 0.703 0.643 0.634 0.625 0.589
87 —_— 0.988 0.818 0.671 0.645 0.622 0.600
0.006 0.005 0.004 0.003 0.002 0.001 0.0008
3 0.0807 | 0.0769 | 0.0677 | 0.0580 | 0.0474 | 0.0340 0.0311
5 0.106 0.0967 | 0.0877 | 0.0748 | 0.0623 | 0.0448 0.0408
10 0.149 0.438 0.124 0.108 0.0895 | 0.0636 0.0590
15 0.186 0.169 0.154 0.134 0.112 0.0814 0.0736
20 0.214 0.199 0.178 0.457 0.130 0.0950 0.0862
25 0.244 0.223 0.200 0.177 0.148 0.107 0.0968
30 0.2711 0.244 0.222 0.193 0.161 0.119 0.107
35 0.288 0.264 0.242 0.209 0.174 0.128 0.116
40 0.307 0.282 0.259 0.224 0.187 0.138 0.125
45 0.326 0.299 0.274 0.238 0.198 0.147 0.133
50 0.345 0.315 0.288 0.251 0.210 0.156 0.141
55 0.366 0.331 0.299 0.264 0.223 0.165 0.149
60 0.376 0.350 0.312 0.279 0.231 0.172 0.157
65 0.388 0.361 0.331 0.288 0.243 0.182 0.166
70 0.414 0.376 0.341 0.307 0.256 0.194 0.176
- 75 0.425 0.400 0.367 0.319 0.276 0.207 0.190
80 0.480 0.432 0.387 0.349 0.298 0.229 0.211
85 0.537 0.488 0.445 0.408 0.358 0.283 0.256
87 0.581 0.564 0.330 0.472 0.400 0.322 0.297
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TABLE 2.- VALUES OF THE NUMBER OF HALF-WAVES
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—a, = ('MW 4 ) 4 (3 + 2u) ntmth? - n? - l[::—:—'-‘: (r*m*\t 4 n?) +
1 —ut 3 2
2ot (2o 2 ) 3 2]
+ 2Kt [262m? + (1 + p) )
gy = 328 (wtmtht 4 nt) + 12— + 2k [ (xtmnht 4 ) o 200mt 4 1_"_'“]

F

2 d. = — "’i—“‘

5 ——

Si=({1 —p?)='mrt
Ja = (=¥m? 4- n?)8 — (2n% — 1)(2nm2\? 4 n?)? + 2n*mA%p2 (n? — 2)
Jo = 2mO4 [(2=2m?®)? - n?)? — p?nt]

=), = Q8w ) S amtt (4.4)

In the formulas (4.4) the underlined members represent the solution
°f '. Flugge [8'9]0

Retaining only the principal members in (4.3) we find
1 — uAnimae

0" = ‘m + k (x’m’l’ + n’)’ (45)

which agrees with the formula obtained in the literature [10] by another
method.

Formulas (4.2), (4.3) and (4.5) determine the frequency of natural
oscillations of a closed elastic circular cylindrical shell fastened at

both ends.

The oscillations of cylindrical shells in particular have been
investigated [11-14), and in one paper [13] an analysis was made of a
series of results of solutions in which there are mentioned works not

mentioned in our bibliographical list.

A. P, Philippov [11] in a numerical example previously studied by
Fllgge [8,9] pointed out that for fairly large values of A the frequencies
of the natural oscillations of a cylindrical shell with rigid fastenings
and rigidly attached rims are practically the same.

S. Comments. First of all we observed two cases investigated by V, E.

) Breslavskii [4]). In the first a = 10 ¢m, b = 17.5 cm, 1 %60 cm, § = 0.1
cm; as a result the mean radius of the conical shell equals R = 1/2 (a + b)
= 13,75 em, the angle of inclination of the generator to the base i =

= 82° 13!, the height of the conical shell will be h = lsin & = 59,44 cm,
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In the second case a = 12,5 ¢m, b =15¢n, 1 = 85 cm,d= 0.1 cm and R =
= 13,75 cm, h = 84,97 ¢cm, o = 585-19'. The machanical characteristics
of the material were not given in the literature [4].

Let us assume that they were the same as in another paper of that
author [14]): E = 1,93 x 10° kg/em?; ¢ = 0.3; Y = 0,00785 kg/cm3. We will
take g = 981 cm/ sec?,

It is evident that the two conical shells differed little from the

cylindrical, Let us therefore interpolate in place of a conical shell a
c¢ylindrical shell equivalent to it, with a radius of the middle surface
equal to the half-sum of the radii of the bases of the conical shell, with
& length equal to the height of the conical shell, and with the same tgick-
ness, Then for the two equivalent cylindriczl shells k = 4,4077 x 10",
and the ratio of the radius to the length will be = 0,2313 and = 0.1618
respectively, We calculate according to forrmula (4.5). The lowest fre-
quency will be at m = 1. If f = w/2W for the first case the lowest fre-
quency will be at n = 4, whereupon £1 = 254 osc/sec, 52 = 275 osc/sec,
55 = 285 osc/sec; here 51 and 55 = the calculated and experimental values
of the frequency obtained from the literature [4], £2 = the value of the
frequency calculated according to formula (4.5). For the second example
(n = 3) £, =192 osc/sec, 1, = 196 osc/sec, 33 = 200 osc/sec.

The number of half-waves on the perimeter of the shell agrees in the
two cases.

Thus the unnecessary complication introduced into the calculation of
a conical shell similar to the cylindrical was unwarranted, The calcul-
ations show that when 2 75 the above-suggest=d substitution for the conical
shell of the equivalent cylindrical is always allowable with quite insignif-
icant error within the limits of accuracy of the determination of the fre-
quency of mnatural oscillations,

Let us analyze the numerical examples given by Urk and Hut (3]. The
dimensions of the shells examined by them are given in Table 3. The
Poisson's ratio of the material of the shell equals T= 0.3, r/gG = 39.4
x 1011 gec2,

TABIE 3

a cx Mhem | 8100 em A $ 10 o~ £ BsC Fz osc

Case 1 sec sec
1 245 | 405 | 2 | 06w | 20 2.3 | 10 250
2 245 | 405 | 11.4 | 0605 | 660 | 32.5 80 150
3 2.45 | 4.05 7.8 | o603 | 309 | 323 54.7 | 120
4 245 | 4.05 6.4 | 0605 | 208 | 325 45.0 -
5 245 | 4.05 42 | 0.605 8.9 | 32.5 20.5 -
6 0 5.61 14 | 0 4.5 | 3.5 — —
7 245 | 405 | 11.4 | vees | 6.2 | 325 80 150
s 3.9 3.12 1.4 | 1.2 | 3.5 51 -
9 5.3 2.3 | 1.4 | 238 | 218 32.5 48 -

\JT AY bt
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According to Strutt [1]:

Eg [ 1 (@C—nPf 1 14 _oa_al-
?(l-l-u)'rn‘{(l-—u) cos'a [lnq 7 (=9 q)]

——-‘—sm’ a (1 — ¢%) (4n? —sin?a) + n'ln %‘} :

o3+ =) (o s

X BN

4 \¢
The calculations for the indicated examples using formula (5.,1) show
that the lowest values of the frequencies of natural oscillations of the
s8hell always occur at n = 2, They are given in Table 3, where f, and fz
correspond to the values found by formula (5.1) and established experi-
mentally.

As an example let us determine the lowest frequencies of matural oscill-
ations of a truncated conical shell in whlchtf/a 0.001, A= a/h = 0.5,
= 4o, 50, 60, 70° ( = 0.3).

We calculate using formula (2,7). We obtain accordingly IOUF,min =
= 837 (n = 16), 957 (n = 15), 866 (n = 14), 620 (n = 12),

The non-conformity of the experimental data with the calculations given
in Table 3 is explained also by a difference existing in the limiting con-
ditions of the problem., The oscillation of a conical shell, firmly closed
at one end and free at the other, can be the subject of special study.
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